Chapter

1.
2.
3.

-

g

CONCENCS

introduction to programming

COMPUTER PROGRAMMING FUNDAMENTALS
Computer Fundamentals

Programming Fundamentals

Elementary Programming Techniques

ON-LINE OPERATIONS
System Description and Operation
Loading, Editing, and Debugging

ADVANCED PROGRAMMING TECHNIQUES
Input/ Output Programming

DECtape Programming

Floating-Point Packages

i g o i DMy F 1 qeaih, mearer s pha T mfas
A St it ISA S B e i 5 12

' H FOA fed EES g ;

4 s 2.1 VA.mQH“. TV J L ¢ U » 1 Fliy 45 A

¥ rxy FRES N E KL N E e . f B . e %

¥ A s tig., gt ; o)

DEC-08-XINPA-A-D

$in

P o 2

R R N LRl o Yy

25 e

SRl
- small systems software.
"' documentationgroup -

* ' digital equipment corporation

pdp-8 handbook series *

e

First Edition, January 1969
Second Printing, July 1969
Second Edition, September 1970
Third Edition, May 1972
Fourth Edition, September 1973
Fifth Edition, April 1975

The description and availability of the software products de-
scribed in this manual are subject to change without notice. The

availability or performance of some features of the software prod-

ucts may depend on a specific configuration of equipment. Conse-
quently, DEC makes no claim and shall not be liable for the
accuracy of the software products. Distribution of software prod-
ucts shall be in accordance with the then standard policy for each
such software product.

Copyright (©) 1970, 1971, 1972, 1973, 1975
Digital Equipment Corporation

The following are nommmamnoa trademarks of Digital Equipment -

Corporation, Maynard, Massachusetts:

CDP DIGITAL KA10 PS/8

COMPUTER DNC : 'LAB-8 QUICKPOINT
LAB EDGRIN LAB-8/¢ RAD-8

COMTEX EDUSYSTEM LAB-K RSTS

COMSYST FLIP CHIP OMNIBUS RSX

DDT FOCAL 0S/8 U RTM

DEC GLC-S - POP SABR

DECCOMM IDAC PHA . TYPESET 8

DECTAPE IDACS ; UNIBUS

DIBOL INDAC

Qraeluion

As few as five years ago, the suggestion that a computer or com-
puter-based system could be readily available to users at all levels
of technical knowledge and ability still evoked surprise and con-
cern among many. To help convey our position that programming
a minicomputer was not a restricted undertaking, we introduced
in January of 1969 our first major handbook dealing specifically
with the fundamentals of machine and assembly language program-
ming on a minicomputer—Introduction to Programming. Since
that time, the demand for this handbook by users in every field
and occupation, experienced programmer and novice alike, has
clearly proven the value of such a book.

In addition to Introduction to Programming, we include several
other volumes in our PDP-8 handbook series. The Small Com-

_ puter Handbook provides extensive technical information concern-

ing hardware options, interfacing, system operation and installa-
tion planning; this handbook is invaluable to those who will develop
and maintain a EEHO.EUEQ installation. The EduSystem Hand-
book contains a complete self-instruction course in the use of the
BASIC programming language, plus user guides to each of the
existing EduSystems—systems designed specifically for classroom
use. Finally, the forthcoming OS/8 Handbook will present com-
prehensive information dealing with DEC’s complete computer
system for the PDP-8—0S/8. OS/8 provides the programmer
with an extended library of system programs, including a text
editor, octal debugging program, assemblers, loaders, and FOR-
TRAN IV.

Once again, I wish to thank all programmers, writers, teachers
and students who have contributed to our handbooks. Through
your support we can continue producing extensive low-cost pro-
gramming information for PDP-8 computers.

Lo ek i

Kenneth H. Olsen
President,
Digital Equipment Corporation

y
_

To simplify the process of writing or reading a program, each in-

i ponents of the five units and their interrelationships are shown in

.- Figure 2-1. For simplicity,- the input and o::uﬁ units have been

struction is often represented by a simple 3- or 4-letter mnemonic £ combined. ;

symbol. These. mnemonic symbols are considerably easier to relate to a

computer operation because the letters often suggest the aomimom of o s e e R

the instruction. The programmer is now able to write a program in a output | UNIT | UNIT | s

language of letters and numbers which suggests the meaning of each HHiTs __ “ __

instruction. : : ! S PRV o > PROGRAM [T wOmoﬂwmw
The computer still does not understand any language except binary §& } { | COUNTER [qy eGSR

numbers. Now, however, a program can be written in a symbolic lan- ; I e _ | gt

guage and translated into the binary code of the computer because of 3. . INPUT/ __ e “ | | BUFFER

the one-to-one correspondence between the binary instructions and the | : %%,w_mmqm 1| accum- m “ REGISTER

mnemonics. This translation could be done by hand, defeating the pur- § . & | ULATOR | | finstRUCTION| |

pose of mnemonic instructions, or the computer could be used to do the £ | 5 | | __ REGISTER L

translating for the programmer. Using a binary code to represent alpha- i omw_wqmm. " | h __

betic characters as described in Chapter 1, the programmer is able to & ETE. . k4 | TRiDE | R

store alphabetic information in the computer memory. By instructing “ __ mmmmmwmom | RoeE TEOHI Wabhe

|

the computer to perform a translation, substituting binary numbers for |
the alphabetic characters, a program is generated in the binary code
of the computer. This process of translation is called “assembling” a |
program.
assembler.
Although the assembler is described in detail in Chapter 6, it is well
to make some observations about the assembler at this point..
i

A specific mnemonic language for the PDP-8, called PAL (Program:
Assembly Language), is introduced later in this chapter. The next sec-
tion describes the general PDP-8 characteristics and components. This.
information is necessary to an understanding of the wa 8 instructions;
and their uses.within a EomBB

PDP-8 ORGANIZATION AND STRUCTURE .
The PDP-8 is a high-speed, general purpose digital computer which
operates on 12-bit binary numbers. It is-a mmzm_o,ma%mmm parallel

© mnemonics.

‘binary numbers.

”»

Figure 2-1 Block Diagram of the PDP-8

ion i lled an F .
The program that performs the translation is called a fnpat and Outpmt Units

The input and output units are combined in Figure 2-1 because in
many cases the same device acts as both an input and an output unit.
The Teletype console, for example, can be used to input information
which will be accepted by the computer, or it can accept processed in-
formation and print it as output. Thus, the two units of input and output
are very often joined and referred to as input/output or simply 1/0.
Chapter 5 describes the methods of transmitting data as either input or
output; but for the present, the reader can assume that the computer is
able to accept information from devices such as those listed in the block
diagram and to return dutput information to the devices. The PDP-8
console allows the programmer direct access to core memory and the
program counter by setting a series of switches, as described in detail
in Chapter 4.

Arithmetic Unit z

' The second unit contained in the PDP-8 block diagram is the arith-
metic-unit. This unit, as shown in the diagram, accepts data from input
devices and transmits processed data to the output devices as well. Pri-
marily, however, the unit performs calculations under the direction of
the control unit. The Arithmetic Unit in the PDP-8 consists of an
ccunuilator and a link bit.

The assembler itself must be written in GENJ\ cade, :oﬁu

It performs a one-to-one translation om mnemonic codes into:

It allows programs to be written in a mv:dco:o E:mcmmo ei:or;,
is easier for the programmer to understand ‘and remember.

: 2-5
2-4

ACCUMULATOR anv

The prime component of the arithmetic unit is a 12-bit register called
the accumulator. It is surrounded by the electronic circuits which per-
form the binary operations under the direction of the control unit. Its
name comes from the fact that it accumulates partial sums during the
execution of a program. Because the accumulator is only twelve bits in
length, whenever a binary addition causes a carry out of the most sig-
nificant bit, the carry is lost from the accumulator. This carry is re-
corded by the link bit.

LINK (L)

Attached logically to the accumulator is a 1-bit register, omzoa the
link, which is complemented by any carry out of the accumulator. In
other words, if a carry results from an addition of the most significant
bit in the accumulator, this carry results in a link value change from O
to 1, or 1 to 0, depending upon the original state of the link.

Below is a diagram of the accumulator and link. The twelve bits of
the accumulator are numbered O to 11, with bit O being the most sig-
nificant bit. The bits of the AC and L can be either binary 0’s or 1’s as
shown below.

to the appropriate address. The PC must be initially set by input to
specify the starting address of a program, but further actions are con-
‘:ozna by program instructions.

INSTRUCTION REGISTER (IR)

The 3-bit instruction register is used by the control unit to specify
the . main characteristics of the instruction being executed. The three
most significant bits of the current instruction are loaded into the IR
each time an instruction is loaded into the memory buffer register from
core memory. These three bits contain the operation code which
specifies the main characteristics of an instruction. The other details
are specified by the remaining nine bits (called the operand) of the
instruction.

MAJOR STATE GENERATOR

The major state generator establishes the proper states in sequence
for the instruction being executed. One or more of the following three
major states are entered serially to execute each programmed instruc-
tion. During a Fetch state, an instruction is loaded from core memory,
at the address specified by the program counter, into the memory
uffer register. The Defer state is used in conjunction with indirect ad-
dressing to obtain the effective address, as discussed under “Indirect
>aa~omm5m later in this chapter. During the Execute state, the instruc-
tion in the memory buffer register is performed.

CINK ACCUMULATOR
: 0 1.2 '3 4 5 6 772.8.79 I0"ll

m T/ _o_o_o_o_o_o_o_o_
B .

'MOST SIGNIFICANT BIT LEAST SIGNIFICANT BIT

(@]
(@]
o
Q

‘Memory Unit

. The PDP-8 basic memory unit consists of 4,096 12-bit words of
Sawzm:n core memory, a 12-bit memory address register, and a 12-bit
‘memory buffer register. The memory unit may be expanded in units of
4,096 words up to a maximum of 32,768 words.

CORE MEMORY

‘The core memory provides storage for the instructions to be per-
formed and information to be processed. It is a form of random access
storage, meaning that any specific location can be reached in memory
‘as readily as any other. The basic PDP-8 memory contains 4,096 12-bit
‘magnetic core words. These 4,096 words require that 12-bit addresses
be used to specify the address for each location uniquely.

MEMORY BUFFER REGISTER (MB)

All transfers of instructions or information between core memory and
.the processor registers (AC, PC, and IR) are temporarily held in the
&mEOnm buffer register. Thus, the MB holds all words that go into and
out of memory, updates the program counter, sets the instruction
egister; sets the memory address register, and accepts information
from or provides information to the accumulator. :

Control Unit

The instruction register, major state generator, and program counter
can be identified as part of the control unit. These registers keep track
of what the computer is now doing and what it will do next, thus
specifying the flow of the program from beginning to end.
PROGRAM COUNTER (PC) _

The program counter is used by the PDP-8 control unit to record |
the locations in memory (addresses) of the instructions to be executed.,
The PC always contains the address of the next instruction to be exe
cuted. Ordinarily, instructions are stored in numerically consecutive
locations and the program counter is set to the address of the next in-
struction to be executed merely by increasing itself by 1 with each
successive instruction. When an instruction causing transfer of comman d
to another portion of the stored program is encountered, the PC is set

2-6
2-7

AND (Onnng)

~ The AND instruction causes a bit-by-bit Boolean AND operation
between the contents of the accumulator and the data word specified
by the instruction. The result is left in the accumulator as illustrated
below.

MEMORY ADDRESS REGISTER (MA)

The address specified by a memory reference instruction is held .in}
the memory address register. It is also used to specify the address of th
next instruction to be brought out of memory and performed. It can be;
used to directly address all of core memory. The MA can be set by
the memory buffer register, or by input through the program counter,

register, or by the program counter itself. K szH _s_s_ : _a_ _ _ s_a_ _ _ _ _ ; is _ ol
- [GEELOT] omven
_.._sz _i&___&_s_a_s_____i.a_s_\,n%mmcri

v

MEMORY REFERENCE INSTRUCTIONS

The standard set of instructions for the PDP-8 includes n_mrﬁ .cum_
instructions. The first six of these instructions are introduced in the
following wmnmma@:m and are presented in both octal and mnemonic
form with a aomo:@:os of the action of each instruction.

The memory reference instructions (MRI) require an. owmgsa to
specify the address of the location to which the instruction refers. The
manner in which locations are specified for the PDP-8 is discussed in

‘The following points should be noted with respect to the AND

instruction: _

1. A 1 appears in the AC only when a 1 is present in both the AC
and the data word (The data word is often referred to as a

detail under “Page Addressing” later in this chapter. In the following mask);
discussion, the first three bits (the first octal digit) of an MRI are used 2. The state of the link bit is not affected by the AND instruction;
to specify the instruction to be performed. (The last nine bits, three. ‘and j
octal digits, of the 12-bit word aré¢ used to specify the address of the 3. The amﬂm word in the referenced location is not altered.
referenced location—that is, the operand.) >U (1nnn,)

8

“ The six memory reference instructions are listed below with their_
mnemonic and octal equivalents as well as their memory cycle times

-

. The TAD instruction @o&o:.:m a binary addition between the speci-
fied data word and the contents of the accumulator, leaving the result
of the addition in the accumulator. If a carry out of the most significant
it of the accumulator should occur, the state of the link bit is comple-

Octal . Memorygmented. The add instruction is called a Two’s Complement Add to re-

Instruction Mnemonic? Value Oxnﬁm BEQ the programmer that negative numbers must be expressed as the
Logical AND - AND Onnn 2 #two’s complement of the positive value. The following figure illustrates
Two’s Complement Add Ty e Innn 2 SR omummmro: afthe H,>U bRt

Deposit and Clear the Accumulator DCA - 3nnn 2 .

Jump IMP Snnn 1

Increment and Skip if Zero 1SZ 2nnn 2 : .

Jump to Subroutine IMS 4nnn 2 i _z.xB _&.TN;&_&_&_&_&_&_&_ _FE_L e

—______;;______ | _s___.uE»iomoTu
_zx. lele|e|o]o|a][a]a]a]0 [1] 2] acresun: +2

1 Memory cycle time for the PDP-8 and -8/1 is 1.5 microseconds; for the PD,
m\r, it is 1.6; for the PDP-8/S, it is 8 E_naommooscm Qaa:moﬁ addressing 1¢
quires an additional memory Qo_m)

2 The mnemonic code is meaningful to and :»zm;:o& by an assembler in
binary code. i

2-8 29

The following points should be remembered when using the H>u.
instruction: , :

1. Negative numbers must be expressed as a two’s complement o

the positive value of the number;

2. A carry out of the accumulator will complement the link; and

3. The data word in the referenced location is not affected.

DCA (3nnny)
The DCA instruction stores the contents of the AC in the referenced

location, destroying the original contents of the location. The AC i
then set to all zeroes. The following example shows the contents of thg

o3

accumulator, link, and location 225 before and after executing the i
struction DCA 225. :

DCA 225

i AC Link T-oc:: 225
Before Execution 1234 1 7654
After Execution 0000 1 1234

The following facts should be kept in mind when using the DCA i
struction:
1. The state of the link bit is not altered;
2. The AC is cleared; and .
3. The original contents of mro addressed location are replaced by

the value of the AC. i
JMP (5nnn,) ¥

The JMP instruction loads the effective address of the Em:.:n.ao;
into the program counter, thereby changing the program sequence sincg

the PC specifies the next instruction to be performed. In the followin

example, execution of the instruction in location 250 (JMP 300) causeg

the program to jump over the instructions in locations 251 through 27
and immediately transfer control to the instruction in location 300. *

Location Content ;

250 JMP 300 (This instruction transfers progral
; 5 control to location 300.) g

300 DCA 330

NOTE: The JMP instruction does not affect the contents of
the AC or link.

ISZ (Znnny) .

The ISZ instruction adds a 1 to the referenced data word and the
examines the result of the addition. If a zero result occurs, the instruc
tion following the ISZ is skipped. If the result is not zero, the instructio

2-10

following the ISZ is performed. In either case, the result of the addition
replaces the original data word in memory. The example in Figure 2-2

¢ illustrates one method of adding the contents of a given location to the

AC a specified number of times (multiplying) by using an ISZ instruc-
. tion to increment a tally. The effect of this example is to multiply the
contents of location 275 by 2. (To add the contents of a given location
to the AC twice, using the ISZ loop, as shown in Figure 2-2, requires
_more instructions than merely repeating the TAD instruction. However,
when adding the contents four or more times, use of the ISZ loop re-
quires fewer instructions.) In the first pass of the example, execution of
,ISZ 250 increments the contents of location 250 from 7776 to 7777
and then transfers control to the following instruction (JMP 200). In
the second pass, execution of ISZ 250 increments the contents of loca-
tion 250 from 7777 to 0000 and transfers control to the instruction in
location 203, skipping over location 202. :

CODING FOR ISZ LOOP

: Location Content
200 TAD 275
201 = ISZ950

202 : ugm 200

L 203 DCA 276 -

250 7776

: 275 0100 : x |
276 0000 .

SEQUENCE OF EXECUTION FOR ISZ LOOP
Content After Instruction Execution

Location Content AC 250 275 276

FIRST PASS S . e e

200 TAD 275 0100 7776 0100 0000

201 1SZ 250 0100 7777 0100 0000
202 JMP. 200 0100 7977 0100 0000

SECOND PASS

200 TAD 275 0200 7777 0100 0000

201 1SZ 250 0200 0000 0100 0000

202 JMP 200 (Skipped during second pass)

203 DCA 276 0000 0000 0100 0200

Figure 2-2. ISZ Instruction Incrementing a Tally

2-11

=

SUBROUTINE
3507 0000 (This location is assumed to have an
: 3 initial value of 0000; after JMS 350 is
executed, it-is 0201.)

‘ ; 351, .. 1ii (First instruction of subroutine)
The following points should be kept in mind when using the ISZ :
instruction: : . .
1. The coiitents of the AC and link are not disturbed; : 375 - JMPI1350 (Last instruction of subroutine)

The following should be kept in mind when using the JMS:
1. The value of the PC (the address of the JMS instruction 1)
is always stored in the first location of the subroutine, replacing
the original contents; i

2. The original word is replaced in main memory by the incre- (§
mented value; .

3. When using the ISZ for looping a specified number of times,
the tally must be set to the negative of the desired number; and

4. The ISZ performs the incrementation first and then checks for

2. Program control is always transferred to the location designated
a zero result.

by the operand --1_(second location of the subroutine);
3. The normal return from a subroutine is made by using an in-
. direct JMP to the first location of the subroutine (JMP I 350
in the above example); (Indirect addressing, as discussed later
in this chapter, effectively transfers control to location 201.);

JMS (4nnny) i :
A program written to perform a specific operation often includes sets
of instructions which perform intermediate tasks. These intermediate ’
tasks may be finding a square root, or typing a character on a keyboard.
Such operations are often performed many times in the running of one ‘
program and may be coded as subroutines. To eliminate the need of
writing the complete set of instructions each time the operation must be :
performed, the JMS (jump to subroutine) instruction is used. The IMS
instruction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the !
subroutine is executed, the pointer address identifies the next instruc-
tion to be executed. Thus, the programmer has at his disposal a simple %
means om. exiting from the normal flow of his program to mm.mmo:: an B DDRESSING
intermediate task and a means of return to the correct location upon
" completion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed later in this chapter.) The following exam-
ple illustrates the action of the JMS instruction.

4. When the results of the subroutine processing are contained in
thé AC and are to be used in the main program, they must be
stored upon return from the subroutine before further calcula-
tions are performed. (In the above example, the results of the
m:cao:ﬂsn processing are stored in location 270.)

When the memory reference instructions were introduced, it was
stated that nine bits are allocated to specify the operand (the address
referenced by the instruction). The method used to reference a memory
location using these nine bits will now be discussed.

Location Content BOP-8 M -
PROGRAM 5 R e : ia .
200 JMS 350 (This instruction stores 0201 in loca- As previously described, the format of an MRI is three bits (0, 1,

tion 350 and transfers program contro
to location 351.) e

201 DCA 270 (This instruction stores the contents of
the AC in location 270 upon return
from the subroutine.)

and 2) for the operation cdde and the remaining nine bits the operand.
ﬁoimér a full twelve bits are needed to uniquely address the 4,096
(10,000 octal) locations that are contained in the PDP-8 memory unit.
To make the best use of the available nine bits, the PDP-8 utilizes a
logical division of memory into blocks (pages) of 200 locations each,
asshown in the following table.

2-13
2-12

Memory Memory ~ As previously stated, bits O through 2 are the operation code for the
Page Locations Fage - Locations MRI. Bits 5 through 11 identify a specific location on a given page, but
B 0-177 20 4000-4177 row do not identify the page itself. The page is specified by bit 4, often
1 . 2060-377 21 4200-4377 called the current page or page 0 bit. If bit 4 is a 0, the page address is
2 400-577 22 4400-4577 nterpreted as a location on page 0. If bit 4 is a 1, the page address
3 600-777 ww mewwwww @ao_m@m &c_c&o%amaa to be on the current page (the page on which
w WWWNMWWW 25, . B mmoo”mwwr\ he MRI itself is stored). For example, if; bits 5. through 11 represent
6 1400-1577 26 5400-5577 235 and bit 4 is a 0, the location referericéd-is*absolute address 123..
7 1600-1777 e 2 5600-5777 However, if bif 4 is a 1 and the current instruction is in a core memory
10 2000-2177 30 - 6000-6177 location whose absolute address is between 4,6005 and 4,777, the page
11 2200-2377 : ww ! Mwwwmwww _ ddress -123;. designates the absolute address 4,723;. Note that, as
Wm mewww‘ww wu : mmoo”m..\,: hown E the following Q.BBEP this characteristic o.m page addressing
14 3000-3177 34 7000-7177 ults in the octal coding for two TAD instructions on different
15 3200-3377 .39 7200-7377 memory- pages being identical when their operands reference the same
16 3400-3577 36 7400-7577 relative location (page address) on their respective pages. .
17 3600-3777 37 7600-7777 :
Content
Location Mnemonic | Octal Explanation
Since there are 2005 locations on a page and seven bits can represen 200 e T T o D o o
2004 different numbers, seven bits (5 s:ocm: 11 of the MRI) are used ; S SEREL I sl il
to specify the page address. Before discussing the use of the page ad- y tion 50 on the current page (bit
dressing convention by an MRI, it should be emphasized that memory 400 TAD 450 1250 4 ='1) to the accumulator.

does not contain any physical page separations. The computer recog-_
nizes only absolute addresses and does not know what page it is on, or
when it enters a different page. But, as will be seen, page addressing_
allows the programmer to reference all of the 4,096, locations of
memory using only the nine available bits of an MRI. The moddm; of a
MRI is shown in Figure 2-3.

Except when it is on @mmm 0, a memory reference instruction can refer-
ence. 4004 locations directly, namely those 2005 locations on the page
containing the instruction itself and the 200, locations on page 0, which
£ can be addressed from any memory location.

OTE: If an MRI is stored in one of the first 200, memory locations (0 to

177s), current page is page O; therefore, only locations 0 to 177 are
directly addressable.

OPERAND ‘W Indirect Addressing
BIT : r = ! In the preceding moocon the method of directly addressing 4005

PesiTion. 0. LZE 38 Om % M % w Muo ﬂ_u_ memory locations by an MRI was described—namely those on page 0
a el e and those on the current page. This section describes the method for

m_wﬂﬂw _M L N _ | L : Z maanomm:_m the other 7400; memory locations. Bit 3 of an MRI, shown
ORI OPERATION PAGE ADDRESS BITS in Figure 2-3 but not discussed in the preceding section, designates the
CODE (0 TO 177g) address mode. When bit 3 is a 0, the operand is a direct address. When

ADDRESS MODE BIT CURRENT PAGE OR PAGE O BIT
O: DIRECT ADDRESSING 0. PAGE O
| INDIRECT ADDRESSING . CURRENT PAGE

bit 3 is a 1, the operand is an indirect address. An indirect address
(pointer-address) identifies the location that contains the desired address
effective address). To address a location that is not directly address-
able, the absolute address of the desired location is stored in one of
¢ 4005 directly addressable locations (pointer address); the pointer
ress is written as the operand of the MRI; and the letter I is written
2-15

Figure 2-3. Format of a Memory Reference Instruction

2-14

The following three examples illustrate some additional ways in
vhich indirect addressing can be used. As shown in example 1, indirect
ddressing makes it possible to transfer program control off page 0 (to

between the mnemonic and the operand. (During assembly, the pres
ence of the I results in bit 3 of the MRI being set to 1.) Upon execution
the MRI will operate on the contents of the location identified by Em s e o] Sl ndieat s e ko
: address contained in the pointer location. . ossible for other memory reference instructions to address any of ‘the
The two examples in Figure 2-4 illustrate the difference betweeiiy 096, , memory locations.) Example 2 shows a DCA instruction that
, direct addressing and indirect addressing. The first example shows 4& i indirect addressing with a pointer on the current page. The pointer
TAD instruction that uses direct addressing to get data stored on page 0F <1 1hic case designates a location off the current page (location 227) in
in location 50; the second is a TAD instruction that uses indirect ad | which the data is to be stored. (A pointer address is normally stored on
dressing, with a pointer on page 0 in location 50, to obtain data storedf ihe current page when all references to.the designated location are from
in location 1275. (When references are made to them from variousg the current page.) Indirect addressing provides the means for returning
pages, constants and pointer addresses can be stored on page 0 to avoidf 0 a main program from a subroutine, as shown in example 3. Indirect
the necessity of storing them on each applicable page.) The octal valug addressing is also effectively used in manipulating tables of data as de-
1050, in the first example, represents direct addressing (bit 3 = 0); thef <cribed and illustrated in conjunction with autoindexing in Chapter 3.
octal value 1450, in the second example, represents indirect addressing !

ﬁ (bit 3 = 1). Both examples assume that the accumulator has previously: .meSw.rﬂ 1
I Sl y Location ' = Content
Location Content 75 :<:U 1 100 :?:u 1100 = 5500.)
R wo_.saa Address
200 TAD 50 (TAD 50 = 1050) : / Designates Indirect Addressing
:] ll//>gmnomm _oo 6000 Instruction :
i ‘ Instruction ; /
50 1275 A Effective Address
; J(HUEN. (Number) To Be Acted Upon By 2 Pointer Address
i K Instruction Address "6000 U0>h/
1275 20 (Content of location 1275 is not used in : J[Next Instruction To Be Executed
the execution of the instruction in 33- 4 ; Effective Address
; : tion 200.) -] NOTE: Execution of the instruction in location 75 causes pro-
NOTE: AC = 1275 after executing the Em:cn:oz 5 _03- : gram control to be transferred to location 6000, and
tion 200. the next instruction to be executed is the DCA Soo

s : instruction.
Location Content

¥

AD I 5 TAD 150 = 1450,) ,mx_>2wrm T o :
N.oo 5 U lol//mmo::m_, >aaﬂmmm : - Fog:o: . .Ooio:w . : ,.
: : Designates Indirect Addressing 450 DCA I 577 (DCA 1577 = 3777,)
i : Instruction . .,Avo::mn Address
50 1275 o ST ; ; Designates Indirect >m3m£5m
3 4/ Effective Address ' : . - “Instruction
3 Pointer Address ot 577
1275 / / Effective >ﬁ_a8mm
‘/Umﬁm (Number) Ho Be >o$a Cvo: w< = Painier >aa8wm
Instruction qu

Effective Address
NOTE: AC = 20 after executing the instruction in location.
200.

nnnn ;
¥y A/Umﬁm AZ:chG Stored w< —sm::n:o:
. Effective Address ,
ZO,Hm Execution of the ‘instruction in location 450 causes the
: contents of the accumulator to be stored in _Onm:oz
227,

Figure 2-4. Comparison of Direct and Indirect Addressing

2-17
2-16

EXAMPLE 3

Location Content
207 JMS 1 70 (JMS 170 = 4470,) it
210 TAD 250 (The next instruction to be oxmoima
. s upon return from the subroutine.)
70 2000 (Starting address of the mc_uno:::o
i 5 stored rmnm) .W
2000 aaaa (Return address stored here by :Sm
: instruction.) -
2001 iii (First instruction of mccnoccsm.v :
2077 . JMP 12000 (Last instruction of subroutine.)
ZO.Hmm" 1. Execution of the instruction in location No,q causes

the address 210 to be stored in location 2000 and
the instruction in location 2001 to be executed
next. Execution of the subroutine proceeds until
“the last instruction (JMP I 2000) causes control
to be transferred back to the main program, con-
tinuing with the execution of the instruction stored
in location 210.

2. A JMS instruction that uses indirect maannmm_nw is
useful when the subroutine is too large to store on
the current page.

3. ,,mﬁoanm the pointer address on page 0 enables in-
structions on various pages to have access to the
_subrotitine.

OPERATE ?EOWO-Zm%—wGO‘:OZm

The operate instructions (octal operation code = 7) allow the mno-
grammer to manipulate and/or test the data that is located in the
accumulator and link bit. A large number of different instructions wnm
possible with one operation code because the operand bits are noﬂ
needed to specify an address as they are in an MRI and can be used to.
specify different instructions. The operate instructions are separated
into two groups: Group 1, which contains manipulation instructions,
and Group 2, which is primarily concerned with testing ovmnw:o:md .
Group 1 instructions are discussed first.

Group 1 Microinstructions

The Group 1 microinstructions manipulate the contents of the accu;
mulator and link. These instructions are microprogrammable; that is,
they can be combined to perform specialized operations with other
Group 1 instructions. Zﬂonovqomamaa_:m is a_mncmmma later in this
chapter.

2-18

(o] | 2 3 4 5.8 T 8 2l
| | | O [CLA[CLL|CMA|CML|RAR|RAL “y IAC
OPERATION H .9 . ROTATE ONE PLACE

CODE ZERO SPECIFIES

GROUP |

The preceding diagram illustrates the manner in which a PDP-8 in-
struction word is interpreted when it is used to represent a Group 1
operate microinstruction. As previously mentioned, 7, is the operation
code for operate microinstructions; therefore, bits O through 2 are all
I’s. Since a reference’to core memory is not necessary for the operation
of microinstructions, bits 3 through 11 are not used to reference an
address. Bit 3 contains a 0 to signify that this is a Group 1 instruction,
and the remaining bits are used to specify the operations to be per-
formed by the instruction. The operation of each individual instruction
specified by these bits is described below.

CLA

| . ROTATE TWO PLACES

Clear the accumulator. If bit 4 is a 1, the instruction sets
‘the accumulator to all zeroes.

Clear the link. Tf bit 5 is a 1, the link bit is set to 0.
QQEENSNE the an:ii&g If bit 6 is a 1, the accumu-
lator is set to the 1’s ooaioaoi of its o:m_:m_ value; that
is, all 1’s become 0’s, and all 0’s become 1’s.

Complement the link. If bit 7 is a 1, the state of the link bit
is reversed.

Rotate the accumulator and link right, If bit 8 is a 1 and
bit 10 is a 0, the instruction treats the AC and L as a closed
loop and shifts all bits in the loop one position to the right.
This operation is illustrated by the following diagram.

CLL
CMA

CML

RAR

L AC

CToTo[[T [eTo e [o T e

VIR AN

—_—o_o_o__w____O_O—o_o._o— AFTER RAR.

Rotate the accumulator and link twice right. If bit 8 is a 1
and bit 10 is also a 1, a shift of two places to the right is
executed. Both the RAR and RTR instructions use what is
commonly called a circular shift, meaning that any bit
rotated off one end of the accumulator will reappear at the
other end. This operation is illustrated below. :

RTR

2-19

AC

rﬂ. _Wﬁ;_v_o_o_o_o_c_o_;,_; BEFORE RTR
[Tl el eLeleTe] o] wren oo

_ RAL Rotate the accumulator and link left. 1f bit 9 is a 1 and bit
: 10is a 0, this instruction treats the AC and L as a closed
f loop and shifts all bits in the loop one position to the left,
performing a circular shift to the left.

Rotate the accumulator and link twice left. If bit 9 is a 1
¢ and bit 10 is a 1 also, the instruction rotates each bit two
| positions to the left. (The RAL and RTL microinstructions
| shift the bits in the reverse direction of that directed by the
RAR and RTR microinstructions.)

Increment the accumulator. When bit 11 is a 1, the con-
tents of the AC is increased by 1.

No operation. If bits O through 2 contain operation .,Hooam
7x, and the remaining bits contain zeros, no operation is
performed and program control is Qmsm?ﬁna to the next
instruction in sequence.

RTL

IAC

NOP

A summary of OB:@ 1 instructions, including their octal ».ondmN is

mzm: below.

. Mnemonic! Octal? Operation Sequence?
NOP 7000 .. No operation s
CLA 7200 Clear AC 1
CLL 7100 Clear link bit 1
o CMA 7040 Complement AC 2
| CML 7020 Complement link bit 2
RAR 7010 Rotate AC and L right one wom_:o: 4
RAL 7004 Rotate AC and L left one position 4
RTR 7012 Rotate AC and L right two positions 4
RTL 7006 Rotate AC and L left-two positions 4
Increment AC 3

IAC 7001

1 Mnemonic code is BamEsnmE to and translated w< an assembler into binary
code.

2 Octal numbers conveniently represent g:w@ EMQ:Q_o:m

3 Sequence numbers indicate the order in which the ovnam:onm are performed
by the PDP-8/1 and PDP-8/L (sequence 'l ononmco:m are vmlo:sna first,
sequence 2 operations are performed next, etc.).: .’

2-20

Group 2 Microinstructions :

Group 2 operate microinstructions are often referred to as the “skip
microinstructions” because they enable the programmer to perform
tests on the accumulator and link and to skip the next instruction de-
pending upon the results of the test. They are usually followed in a pro-
gram by a JMP (or possibly a JMS) instruction. A skip instruction
causes the computer to check for a specific condition, and, if it is pres-
ent, to skip the next instruction. If the condition were not Emmm:ﬁ the
next instruction would be executed.

SNA|~/SZL

OPERATION VALUE OF BIT 8
CODE 7g DETERMINES THE CONTAINS A O
8 ACTION SPECIFIED TO SPECIFY
CONTAINS A | BY BITS 5,6,8 7 GROUP 2

TO SPECIFY /
GROUP 2 REVERSE SENSING BIT
0: SMA, SZA,8 SNL ARE ENABLED

I1 SPA, SNA,8 SZL ARE ENABLED !
(UNCONDITIONAL SKIP WHEN
BITS 5,6,8 7 ARE 0'S)

The available instructions are selected by bit assignment as shown in
the above diagram. The operation of each individual instruction mvmo_-
fied by 98@ bits is described below.

CLA Clear the accumulator, If bit 4 is a 1, the instruction sets
the accumulator to all zeros. .

-SMA Skip on minus accumulator. 1f bit 5 is a 1 and bit 8 is a 0,

ik the next instruction is skipped if the accumulator is less
than zero.

SPA Skip on positive accumulator. If bit 5 is a 1 and bit 8 is a
1, the next instruction is skipped if the accumulator is
greater than or equal to zero.

SZA Skip on zero accumulator. If bit 6 is a 1 and bit 8 is a 0,

the next instruction is skipped if the accumulator is zero.

SNA

Skip on nonzero accumulator. 1f bit 6 is a 1 and bit 8 is a
1 also, the next instruction is skipped if the accumulator is
not zero.

221

Skip on nonzero link. If bit 7 is a 1 and bit 8 is a 0, the
next instruction is skipped when .the link bit is a 1.

Skip on zero link. If bit 7 is a 1 and bit 8 is a 1, the next
instruction is skipped when the link bit is a 0.
Unconditional skip. If bit 8 is a 1 and bit 5, 6 and 7 are
all zeros, the next instruction is skipped. (Bit 8 is a reverse
sensing bit ‘when bits 5, 6 or 7 are used—see- mZ> mw>

. SZA, SNA, SNL, ‘and SZL above.) GhnIE

SNL
SZL

SKP

OSR!
inclusive OR operation is performed between the content
of the accumulator and the console switch register. The re-
sult is left in the accumulator and the original content of
the accumulator is destroyed. In short, the inclusive OR
operation consists of the comparison of the corresponding
bit positions of the two numbers and the insertion of a 1 in
the result if a 1. appears in the corresponding bit position
in either number. See Chapter 1 for further discussion. The
action of the instruction’ is illustrated below.

r_Zx_H_ —._o_o_o_m_ ;o,___o___ow__gnc,zcrﬁoz

h_ _o_m___o__—O_O—OH___“o_wi_ﬂnxzmo_mamm

szB —\._,_O_o___Oﬁ_—O—._o____—._dxmmcﬂ._z»o

-Halt, If bit 10 is a 1, the computer will stop at the conclu-
sion of the current machine cycle.

oL e

A summary of Group 2 instructions, including their octal representa-
tion, is given in the following table.

Mnemonic Octal Operation - Sequence
CLA 7600 Clear the accumulator 2
SMA 7500 Skip on minus accumulator 1
SPA 7510 Skip on positive accumulator 1
. (or AC =0)
SZA 7440 Skip on zero accumulator 1
SNA 7450 Skip on nonzero accumulator 1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SKP 7410 Skip unconditionally 1
OSR 7404 Inclusive OR, switch register 3
é with AC
HLT 7402 Halts the program

2-22

" Inelusive’ OR of switch register with ' AC. If _u; o is a: f mn.

MICROPROGRAMMING :

Because PDP-8 instructions of Onocv 1 and Group 2 are determined
by bit assignment, these instructions may be combined, or BESEO-
- grammed, to form new instructions enabling the computer to do more
operations in less time.

Combining Microinstructions :
The programmer should make certain that the program clears the
accumulator and link before any arithmetic operations are performed.

To perform this task, the program might include the following instruc-
tions (given in both octal and mnemonic form).

CLA
CLL

7200 (octal)
7100 (octal)

However, when the Group 1 instruction format is analyzed, the follow-
ing is observed.

AlCLL

\ /(ch.ﬂ BE A | TO SPECIFY CLL
MUST BE A | TO SPECIFY CLA

MUST BE A O TO SPECIFY GROUP |

O_umxbﬂ_oz
CODE

Since the CLA and the CLL instructions occupy separate bit posi-
tions, they may be expressed in the same instruction, thus combining
the two operations into one instruction. This instruction would be writ-
ten as follows.

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined mak-
ing the execution of the program much more efficient. The assembler
for the PDP-8 will combine the instructions properly when they are
written as above, that is, on the same coding line, and separated by a
space.

Tllegal Combinations

o ZmﬁovnomBEBEmu although very efficient, can also be troublesome
for the new programmer. There are many violatiors of coding which
the'assembler will not accept.

2-23

One rule to remember is: “If you can’t code it, the computer can’t do

» In other words, the programmer could write a string of mnemonic
B_Qovsm::oco:m but unless these microinstructions can be coded cor-
rectly in octal representation, they cannot be mmnmodsnm To illustrate.
this fact, suppose the programmer would like to complement the accu-
mulator (CMA), complement the link (CML), and then m_sc on a
nonzero link (SNL). He could write the ,mo:os:zm

CMA CML SNL
These instructions require the following bit assignments.

52 3 4" =85 56+ 7 =08 & 90 1

oz_>—n_u_!;__o_ _ T_ Ll e]
ow [T T T T T T 1]
. R O 0 o B

The three microinstructions cannot be combined in one instruction be-
cause bit 3 is required to be a 0 and a 1 simultaneously. Therefore, no
instructions may be used which combine Group 1 and Group 2 micro-
instructions because bit 3 usage is not compatible. The CMA and CML
can, however, be combined because their bit assignments are com-
patible. The combination*would be as follows.

CMA CML 7060 (octal)

To perform the o:m_sm_ set Om three owmﬁmcosm two instructions are
needed.

CMA CML 7060 (octal)
SNL 7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be com-
bined, the commonly used microinstruction CLA is a member of both
groups. Clearing the AC is often required in a program and it is very
convenient to be able to microprogram the CLA with the Bmaga of
both groups.

The problem of bit assignment also arises when some instructions
within a group are combined. For example, in Group 1 the rotate in-
structions specify the number of places to be rotated by the state of bit
10. If bit 10 is a 0, rotate one place; if bit 10 is a 1, rotate two places.
Thus, the instruction RAL can not be combined with RTL because bit
10 would be required to have two different values at once. If the pro-

224

grammer wishes to rotate right three places, he must use two separate .

instructions.

RAR 7010 (octal)

RTR ... 7012 (octal)
Although he can write the instruction “RAR RTR”, it cannot be cor-
rectly converted to octal by the assembler because of the conflict i in bit
10; therefore, it is illegal.

OoEE:m:m Skip Microinstructions

Group 2 operate micfoinstructions use bit 8 to determine the instruc-
tion specified by bits 5, 6, and 7 as previously described. If bit 8 is a 0,
the instructions SMA, SZA, and SNL are specified. If bit 8 is a 1, the
instructions SPA, SNA, and SZL are specified. Thus, SMA cannot be
combined with SZL because of the opposite values of bit 8. The skip
condition for combined microinstructions is established by the skip con-
ditions of the individual mcroinstructions in accordance with the rules
for logic operations (see “Logic Primer” in Chapter 1).
OR GROUP—SMA OR SZA OR SNL

If bit 8 is a 0, the instruction skips on the logical OR of the condi-

- tions specified by the separate microinstructions. The next instruction

is skipped if any of the stated conditions exist. For example, the com-
bined microinstruction SMA SNL will skip under the following condi-
tions: . : /
1. The accumulator is negative, the link is zero.
2. The link is nonzero, the accumulator is not negative.
. 3. The accumulator is negative and the link is nonzero.
(It will not skip if all conditions fail.) This manner of combining the
test conditions is described as the logical OR of the conditions.
AND GROUP—SPA AND SNA AND SZL
A value of bit 8 = 1 specifies the group of microinstructions SPA,
SNA, and SZL which combine to form instructions which act according
to the logical AND of the conditions. In other words, the next instruc-
tion is skipped only if all conditions are satisfied. For example; the in-
struction SPA SZL will cause a skip of the next instruction only if the
accumulator is positive and the link is zero. (It will not skip if either
of the conditions fail.)

: NOTES: 1. The programmer is not able to specify the manner
of combination. The SMA, SZA, SNL conditions
are always combined by the logical OR, and the
SPA, SNA, SZL conditions are always joined by a
logical AND.

2. Since the SPA microinstruction will skip on either
a positive or a zero accumulator, to skip on a
strictly positive (positive, nonzero) accumulator
the combined microinstruction SPA SNA is used.

2-25

Order of Execution of Combined Microinstructions

The combined microinstructions are performed by the computer in a
very definite sequence. When written separately, the order of execution
of the instructions is the order in which they are encountered in the pro-
gram. In writing a combined instruction of Group 1 or Group 2 micro-
instructions, the order written has no bearing upon the order of
execution. This should be clear, because the combined instruction is a
12-bit binary number with certain bits set to a value of 1. The order in
which the bits are set to 1 has no bearing on the final execution of the
whole binary word. : pyion

The definite sequence, however, varies between members of the
PDP-8 computer family. The sequence given here applies to the PDP-
8/I and PDP-8/L. The applicable information for other members of
the PDP-8 family is given in Appendix E. The order of execution fo
PDP-8/1 and PDP-8/L microinstructions is as follows. =

GROUP 1
Event 1 CLA, CLL—Clear the accumulator and/or clear the
. link are the first actions performed. They are effectively
performed simultaneously and yet independently.

Event 2 CMA, CML—Complement the accumulator and/or com-
plement the link. These operations are also effectively
mﬁmosdoa,,mmE::msnocmG and independently.

Event 3 IAC—Increment the accumulator. This operation is per-
formed third allowing a number in the AC to be comple-
mented and then incremented by 1, thereby forming the

© two’s complement, or negative, of the number. 0

Event 4 RAR,RAL, RTR, RTL—The rotate instructions are per-

. formed last in sequence. Because of the bit assignment
previously discussed, only one of the four operations may

be performed in each combined instruction. :

GROUP 2- v : T
Event 1 Either SMA or SZA or SNL when bit 8 is a 0. Both SPA

and SNA and SZL when bit 8.is a 1. Combined micro-
instructions specifying a skip are performed first. The
microinstructions are combined to form one specific test,

therefore, skip instructions are effectively performed

simultaneously. .
Because of bit 8, only members of one skip group may be
combined in an instruction. .

2-26

CLA—Clear the accumulator. This instruction is per-
formed second in sequence thus allowing different arith-
metic operations to be performed after testing (see Event
1) without the necessity of clearing the accumulator with
a separate instruction before some subsequent arithmetic
operation.

. OSR—Inclusive OR between the switch register and the
AC. This instruction is performed third in sequence,
allowing the AC to be cleared first, and then loaded from
the switch register. : :]
HLT—The HLT is performed last to allow any other
operations to be concluded before the program stops.

Event 2

Event 3

Event A

This is the order in which all combined instructions are performed.
In order to perform operations in a different order, the instructions
must be written separately as shown in the following example. One
might think that the following combined microinstruction would clear
the accumulator, perform an inclusive OR between the SR and the AC,
and then skip on a nonzero accumulator. :

CLA OSR SNA

'However, the instruction would not perform in that proper manner,
because the SNA would be executed first. In order to perform the skip
last, the instructions must be separated as follows.

CLA OSR

: : SNA

Microprogramming requires that the programmer carefully code
mnemonics legally so that the instruction does in fact do what he desires
it to do. The sequence in which the operations are performed and the
legality of combinations is crucial to PDP-8 programming.

The following is a list of commonly used combined microinstructions,

some of which have been assigned a separate mnemonic.

Instruction Explanation
— CLA CLL Clear the accumulator and link.
CIA ‘CMA IAC Complement and increment the accumulator.
* (Sets the accumulator equal to its own nega-
tive.)
LAS CLA OSR Load accumulator from switches.
(Loads the accumulator with the value of the
switch register.)
STL CLL CML Setthelink (toal).
e CLA IAC Sets the accumulator to a 1.
—_— ‘CLA CMA Sets the accumulator to a —1.

2-27

